SylabUZ
Nazwa przedmiotu | Business Prognossis and Symulation |
Kod przedmiotu | 06.9-WM-ZiIP-ANG-D-04_20 |
Wydział | Wydział Mechaniczny |
Kierunek | Management and Production Engineering |
Profil | ogólnoakademicki |
Rodzaj studiów | drugiego stopnia z tyt. magistra inżyniera |
Semestr rozpoczęcia | semestr zimowy 2022/2023 |
Semestr | 1 |
Liczba punktów ECTS do zdobycia | 3 |
Typ przedmiotu | obowiązkowy |
Język nauczania | angielski |
Sylabus opracował |
|
Forma zajęć | Liczba godzin w semestrze (stacjonarne) | Liczba godzin w tygodniu (stacjonarne) | Liczba godzin w semestrze (niestacjonarne) | Liczba godzin w tygodniu (niestacjonarne) | Forma zaliczenia |
Laboratorium | 15 | 1 | - | - | Zaliczenie na ocenę |
Wykład | 15 | 1 | - | - | Egzamin |
Skills and competences: statistical data analysis, time series, the use of econometric models, quality models, methods for modelling discrete and continuous processes, use of methods of forecasting and simulation of processes in the enterprise.
Basic knowledge of: manufacturing processes, economics, statistics. Thorough knowledge of Excel.
Lecture
W1 Production process. Manufacturing company. The importance of forecasts for the company. Basic concepts. Classification of forecasting methods. Forecasting process. Making managerial decisions. Forecasting methods. Forecasting horizon.
W2 Measures for the quality of forecasts. Errors of forecast ex post and ex ante.
W3 Quantitative forecasting methods. Forecasts based on time models. Formation of time series. Models of time series with trends.
W4 Analytical models. Linear exponential smoothing models. Autoregression and moving average (ARMA and ARIMA) models.
W5 Methods based on econometric models. Stages of formation of an econometric model. Single equation econometric models.
W6 Qualitative forecasting methods. Forecasting based on heuristics. Analogue models. Models with leading variables. Models of cohort analysis. Market tests
W7 Simulation of continuous and discrete processes.
W8 Application scenarios in forecasting.
Laboratory
L1 Application of the method of least squares in forecasting. Determination of the regression line. Implementation of MNK Excel (LINEST).
L2 Extrapolation of a linear function of trend. Determination of the point and interval forecasts.
L3 Forecasting using non-linear trend model. Linearization of a function.
L4 Forecasting based on time series. Random and seasonal fluctuations. Forecasting based on adaptation models. A naive method. Methods: simple moving average and weighted average.
L5 Exponential smoothing models (Brown's, Holt's and Winters')
L6 Econometric models.
L7 Heuristic forecasting methods.
Conventional lecture. Computer laboratory
Opis efektu | Symbole efektów | Metody weryfikacji | Forma zajęć |
Lecture: lecture credit is awarded after passing a written exam which verifies the knowledge of the issues included in the lecture curriculum.
Laboratory: graded credit, based on the component ratings of current tests.
1. Hanke J.E. Reitsch, Business Forecasting, Prentice Hall, Upper Saddle River, 1998.
2. Makridakis S., S.C. Wheelwright, V.E. McGee, Forecasting, John Wley, New York 1983
3. Chambers J.C. Mullick S.T., Smith D.D. How to chose the right forecasting technique. Harvard Business Review, Vol. 4., 1991.
1. Lapin L.L., StatisticfFor Modern Business Decision. Harcourt Brace Javanovich Inc., New York, 1987.
Zmodyfikowane przez dr inż. Tomasz Belica (ostatnia modyfikacja: 25-04-2022 09:38)