SylabUZ

Wygeneruj PDF dla tej strony

Implants and Artificial Organs - elective course - opis przedmiotu

Informacje ogólne
Nazwa przedmiotu Implants and Artificial Organs - elective course
Kod przedmiotu 12.0-WL-LekAM-ImArOrgE- 22
Wydział Wydział Lekarski i Nauk o Zdrowiu
Kierunek WLiNZ - oferta ERASMUS / Lekarski
Profil -
Rodzaj studiów jednolite magisterskie sześcioletnie
Semestr rozpoczęcia semestr zimowy 2023/2024
Informacje o przedmiocie
Semestr 4
Liczba punktów ECTS do zdobycia 2
Typ przedmiotu obowiązkowy
Język nauczania polski
Sylabus opracował
  • prof. dr hab. inż. Romuald Będziński
  • dr hab. inż. Katarzyna Arkusz, prof. UZ
Formy zajęć
Forma zajęć Liczba godzin w semestrze (stacjonarne) Liczba godzin w tygodniu (stacjonarne) Liczba godzin w semestrze (niestacjonarne) Liczba godzin w tygodniu (niestacjonarne) Forma zaliczenia
Ćwiczenia 30 2 - - Zaliczenie 

Cel przedmiotu

The aim of the course is to acquire knowledge in the field of production, properties, and requirements related to implanted products and artificial organs. To familiarize students with the issue of correcting the functioning of the human body in the event of temporary or permanent damage to human systems or organs.

Wymagania wstępne

Knowledge of human anatomy and physiology.

Zakres tematyczny

The scope of seminar exercises is divided into:

  1. Introduction to implants and artificial organs - definitions, requirements for implants, classifications of implants according to clinical criteria and medical specialties
  2. Legal and social problems of organ transplantation
  3. Cardiac stimulators (artificial heart, intra-aortic balloon pump, counterpulsation)
  4. Artificial lung-heart (modeling of artificial lung ventilation, oxygenators)
  5. Artificial heart. Methods of assisting heart function
  6. Artificial kidney (dialysis therapy techniques, capillary membrane technology)
  7. Artificial pancreas (biochemical and biological artificial pancreas, pancreas with open and closed control loop)
  8. Artificial liver (blood detoxification using sorbents).
  9. Control of skeletal muscle function. Active prostheses of the musculoskeletal system. Bioprostheses
  10. Orthopedic implants
  11. Dental and maxillofacial implants
  12. Implants used in osteosynthesis
  13. Eye and ear implants
  14. Computer-aided surgical procedures

Practical classes will be performed in the Biomaterials and Nanotechnology Laboratory and the Biomechanics Laboratory of the Department of Biomedical Engineering.

Scientific projects previously implemented at the Department of Biomedical Engineering include:

  • Electrochemical characterization of two-wall titanium dioxide nanotubes for potential applications in implantology, 2019/03/X/ST5/01330 NCN, Dr. Katarzyna Arkusz Development of an electrochemical biosensor for detecting selected cytokines on a Ti/TiO2 substrate, Diamond Grant, Dr. Katarzyna Arkusz,
  • Obtaining and characterization of self-organizing oxide nanomaterials on implant titanium alloys, N507 082 31/2009,
  • Effect of bending on the in vitro characteristics of the anodic top layer of the titanium implant alloy Ti6Al4V (Dr. Agnieszka Kierzkowska, 3 T08C 015 30)
  • Electrochemical method for determining markers of myocardial necrosis using a substrate of titanium dioxide nanotubes modified with gold nanoparticles, Preludium 18, 2019-2021, Dr. Ewa Paradowska.
  • Electrochemical method for determining the level of heat shock proteins using biosensors based on titanium dioxide nanotube substrate on a titanium foil modified with silver nanoparticles, Preludium 14, 2018-2020, supervisor Marta Nycz.
  • Interaction of a bioresorbable material with tissue under conditions of variable deformation on the example of a urinary catheter, Opus 11, 2017-2020, Prof. Romuald Będziński.
  • Numerical analysis of effort chordae tendineae caused by myxomatous mitral valve disease in dogs of large and small breeds, MINIATURA 6, 2022-2023, Dr Agnieszka Mackiewicz.

The scientific achievements and professional experience allow for conducting exercises in the following areas:

  • Artificial kidney (dialysis therapy techniques, capillary membrane technology).

  • Artificial pancreas (biochemical and biological artificial pancreas, pancreas with open and closed control loop, electrochemical determination of glucose).

  • Parameterization of selected elements of the bone system using DICOM images.

  • Assembly of a biostabilizer on a phantom/animal preparation.

Metody kształcenia

Transmitting seminar exercise content using multimedia presentations. During laboratory classes - teamwork (mainly in teams of 2 to 4 people) using equipment for conducting dialysis procedures and artificial pancreas.

Efekty uczenia się i metody weryfikacji osiągania efektów uczenia się

Opis efektu Symbole efektów Metody weryfikacji Forma zajęć

Warunki zaliczenia

The condition for passing the course is passing a written exam in the form of a test (40 multiple-choice questions). Passing the course is possible after giving correct answers to at least 60% of the exam questions.

The student may have a maximum of two absences, which he/she is required to justify within 5 days and is obliged to make up for them at a date agreed upon with the instructor.

Regulations regarding the conditions for passing the course correspond to the conditions for direct passing, with the reservation that changes may be introduced if it is necessary to switch to remote passing during the regular session.

Other conditions are specified in the Study Regulations at the University of Zielona Góra https://www.uz.zgora.pl/index.php?regulamin-studiow

 

Literatura podstawowa

  1.  Tashiro, H. ( 1 ), Popović, M. B. ( 2 ), Dobrev, I. ( 3 ), & Terasawa, Y. ( 4 ). (2019). Artificial Organs, Tissues, and Support Systems. Elsevier. https://doi.org/10.1016/B978-0-12-812939-5.00007-0
  2. Cîmpean, A., & Miculescu, F. (2020). Biomaterials and Implant Biocompatibility. MDPI - Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/books978-3-03928-217-3
  3. Ratner Buddy D., Hoffman Allan S., Schoen Frederick J., & Lemons Jack E. (2004). 9.5.5.2 Orthopedic and Dental Implants. In Biomaterials Science - An Introduction to Materials in Medicine (2nd Edition). Elsevier.

Literatura uzupełniająca

1. Annesini, M. C., Marrelli, L., Piemonte, V., & Turchetti, L. (2017). Artificial Organ Engineering. doi:10.1007/978-1-4471-6443-2 

Uwagi


Zmodyfikowane przez dr hab. inż. Katarzyna Arkusz, prof. UZ (ostatnia modyfikacja: 18-04-2023 09:57)