SylabUZ
Nazwa przedmiotu | Robot localization and navigation |
Kod przedmiotu | 11.9-WE-AutD-RLaN-Er |
Wydział | Wydział Nauk Inżynieryjno-Technicznych |
Kierunek | Automatyka i robotyka |
Profil | ogólnoakademicki |
Rodzaj studiów | Program Erasmus drugiego stopnia |
Semestr rozpoczęcia | semestr zimowy 2023/2024 |
Semestr | 2 |
Liczba punktów ECTS do zdobycia | 6 |
Typ przedmiotu | obowiązkowy |
Język nauczania | angielski |
Sylabus opracował |
|
Forma zajęć | Liczba godzin w semestrze (stacjonarne) | Liczba godzin w tygodniu (stacjonarne) | Liczba godzin w semestrze (niestacjonarne) | Liczba godzin w tygodniu (niestacjonarne) | Forma zaliczenia |
Wykład | 30 | 2 | - | - | Egzamin |
Laboratorium | 30 | 2 | - | - | Zaliczenie na ocenę |
Fundamentals of robotics, Robot control.
Introduction. Typical mobile robot platforms. Legs and wheels as the movement mechanisms. Essential problems. Examples and applications.
Robot perception. Sensor classification. Characterization of sensor performance and uncertainty of measurements. Feature extraction. Perception algorithms. Vision algorithms. Models of workspace (raster, geometric, topological).
Kinematics of mobile robots. Kinematic models and constraints. Controllability of robot. Workspace and motion control. Kinematics of actuators (camera, laser rangefinders, manipulators, etc.).
Localization of mobile robot. Classification of methods. Challenges in localization. Odometry. Localization based on maps. Probabilistic methods. Kalman filtering In localization. Systems based on environmental marks and global positioning systems. Autonomous map building.
Navigation. Trajectory planning. Classification of motion planning methods. Fundamental techniques of motion planning (visibility graphs, workspace decomposition, Bayesian methods, potential methods etc.). Obstacles avoidance. Movement optimization.
Mobile robot networks. Models of robotnic networks. Centralized and multiagent systems. Methods of motion planning for swarms of robots. Coordination of tasks. Problems of connectivity, randez-vous and optimal robot deployment.
Lecture, Laboratory exercises.
Opis efektu | Symbole efektów | Metody weryfikacji | Forma zajęć |
Lecture – the main condition to get a pass is a positive assessment of written or/and oral examination test
Laboratory – the main condition to get a pass is a sufficient number of positive evaluations of written or oral tests conducted at least three times per semester and positive evaluations of the laboratory tasks assigned by the lecturer.
Calculation of the final grade: lecture 50% + laboratory 50%
Zmodyfikowane przez dr hab. inż. Wojciech Paszke, prof. UZ (ostatnia modyfikacja: 13-06-2023 12:08)