SylabUZ
Nazwa przedmiotu | Fluid Mechanics I |
Kod przedmiotu | 06.1-WM-ER-MiBM-08_18 |
Wydział | Wydział Mechaniczny |
Kierunek | WM - oferta ERASMUS |
Profil | - |
Rodzaj studiów | Program Erasmus |
Semestr rozpoczęcia | semestr zimowy 2023/2024 |
Semestr | 2 |
Liczba punktów ECTS do zdobycia | 6 |
Typ przedmiotu | obowiązkowy |
Język nauczania | angielski |
Sylabus opracował |
|
Forma zajęć | Liczba godzin w semestrze (stacjonarne) | Liczba godzin w tygodniu (stacjonarne) | Liczba godzin w semestrze (niestacjonarne) | Liczba godzin w tygodniu (niestacjonarne) | Forma zaliczenia |
Wykład | 30 | 2 | - | - | Egzamin |
Laboratorium | 15 | 1 | - | - | Zaliczenie na ocenę |
Ćwiczenia | 15 | 1 | - | - | Zaliczenie na ocenę |
The aim of the course is to familiarize students with the methodology of solving technical problems on the basis of the law of fluid mechanics and knowledge and ability to solve simple problems of flow occurring in mechanical engineering.
Knowledge Mathematics I
Course contents:
Introduction. Division of fluids. Fundamental definitions for gases and liquids. Model of a fluid, fluid element definition. Physical properties of fluids. Fluid statics. Fluid pressure on a curved wall. Swimming and stability of floating bodies. Archimedes' principle. Kinematics of fluids. Definition of fields, types of fields, operators of the field. Elements of tensor calculus. Differential equation of a fluid element thorium. Acceleration of a fluid element. Differential equation of a line current fluid element. Analytical methods for the study of fluid motion: method of Lagrange, Euler's method. Cauchy’s and Helmholtz’s theorem – deformation of the fluid element. Fluid dynamics. The principle of conservation of mass – continuity equation. The principle of conservation of momentum - momentum equation. The principle of conservation of moment of momentum – moment of momentum equation. The principle of conservation of energy – the energy equation. Constitutive equations. Closed system of equations describing the motion of viscous and heat conducting fluid. Navier and Stokes equation. General properties of inviscid fluid motion and non-conductive heat. Two general integrals of the Euler equation. Bernoulli's equation. Flat potential fluid motion. The function of current, velocity potential. Rotational motion of the fluid. Simplified forms of Navier and Stokes equation. Special integrals of Navier and Stokes equations. The theory of similarity of flow phenomena; criteria of similarity. Turbulent flows. The theory of a boundary layer. Fluid flow in closed channels. Bernoulli's equation for real flows. Coefficient of linear losses and coefficient of local losses. Fluid flow in open channels. Elements of fluid dynamics. Elements of a perfect gas dynamics.
CLASS
Solving classes based on lectures and source materials
Laboratory topics:
The test a liquid outflow from the tank.
Measurement of a coefficient of linear losses..
Calibration of the Poncelet vessel.
Study of the characteristics of a pump.
Course of energy lines and pressure lines along the pipeline.
The free surface of a liquid in a vessel rotating about a vertical axis..
Determination of the critical Reynolds number,
Correction exercises, tests.
Lectures with audiovisual aids. Solving classes. Working with the book. Group work in laboratory classes
Opis efektu | Symbole efektów | Metody weryfikacji | Forma zajęć |
Lecture
positive evaluation of the test
Class
positive evaluation of the test
Laboratory
received positive ratings of reports carried out laboratory
Evaluation of the course is getting positive ratings from all forms: Lecture, Class, Laboratory
The final grade received by the student is the arithmetic mean of the above grades.
1. White Frank M., Fluid Mechanics, University of Rhode Island, WCB McGraw-Hill, 2015.
2. Nakayama Y., Introduction to Fluid Mechanics, Butterworth Heinemann, 2000.
3. Krause E., Fluid Mechanics, Springer-Verlag Berlin Heidelberg, 2005.
4. Kundu P.K., Cohen I.M., Fluid Mechanics, Academic Press is an imprint of Elsevier, 2015.
5. Durst. F., Fluid Mechanics, Springer Berlin Heidelberg, 2008
6. Graebel, W. P., Advanced Fluid Mechanics, Academic Press, 2007
1. Walicki A., Walicki E., Ratajczak M., Mechanika Płynów. Wprowadzenie teoretyczne do laboratorium. 2002, Oficyna Wydawnicza Uniwersytetu Zielonogórskiego,
2. Walicki A., Walicki E., Ratajczak M., Mechanika Płynów. Materiały pomocnicze do ćwiczeń laboratoryjnych. 2003, Oficyna Wydawnicza Uniwersytetu Zielonogórskiego,
3. Bukowski J., Kijkowski P., Kurs mechaniki płynów, PWN, Warszawa 1980,
4. Gryboś R., Podstawy mechaniki płynów PWN, Warszawa 1989,
5. Prosnak W.J., Mechanika płynów, PWN, Warszawa 1970,
6. Kazimierski Z., Orzechowski Z., Mechanika płynów, Politechnika Łódzka, Łódź 1993.
7. Rumianowski A., Zbiór zadań z mechaniki płynów nieściśliwych z rozwiązaniami, PWN, Warszawa 1978,
8. Gołębiewski C., Łuczywek E., Walicki E., Zbiór zadań z mechaniki płynów, PWN, Warszawa 1980.
Zmodyfikowane przez dr inż. Paweł Jurczak (ostatnia modyfikacja: 31-05-2023 15:36)