SylabUZ

Generate PDF for this page

Structural stability - course description

General information
Course name Structural stability
Course ID 06.4--P-StS- 23
Faculty Faculty of Engineering and Technical Sciences
Field of study WBAiIŚ - oferta ERASMUS
Education profile -
Level of studies Erasmus programme
Beginning semester winter term 2023/2024
Course information
Semester 1
ECTS credits to win 3
Course type obligatory
Teaching language english
Author of syllabus
Classes forms
The class form Hours per semester (full-time) Hours per week (full-time) Hours per semester (part-time) Hours per week (part-time) Form of assignment
Lecture 15 1 - - Credit with grade
Class 15 1 - - Credit with grade

Aim of the course

The aim of the course is to deepen knowledge in the field of structural stability, and in particular to fully understand the methods of controlling buckling limit states checked when designing building structures.

Prerequisites

Scope

Lecture
Concept of loss of stability. Basic stability criteria. Static method, energy method and dynamic method for determining critical load. Critical points: stable bifurcation point, unstable bifurcation point, limit point. Effects of load and geometric imperfections on stability. Flexural stability, torsional stability, flexural stability of bar elements. Dislocation of flexural elements. Compression plate stability and shear plate stability. Stability of shells. Initial stability versus non-linear stability. Consideration of geometrical nonlinearities and physical nonlinearities. Non-conservative problems. Stability versus 2nd order theory. Structural stability in terms of standard regulations: metallic structures, wooden structures, reinforced concrete structures. Use of commercial software for determination of critical loads.

Project .
Analytical solution of the stability problem of a discrete system with one degree of freedom. Application of Timoshenko's energy criterion to the determination of critical loads on compression members (analytical solution with MathCAD support). Application of Timoshenko's energy criterion to the determination of the critical stress of compression plates. Verification of the solution using commercial programs (Robot, Cosmos/M).

Teaching methods

Learning outcomes and methods of theirs verification

Outcome description Outcome symbols Methods of verification The class form

Assignment conditions

Lecture – Assessment based on a colloquium with point thresholds:

50% - 60% positive responses dst,

61% - 70% dst plus,

71% - 80% db,

81% - 90% db+,

91% - 100% very good.

 

Project - The condition for passing is to obtain positive grades in all project exercises (3 exercises).

Pass a subject: The rating is a weighted average of the ratings: O = 0.4W+0.6C.

Recommended reading

  1. Timoszenko S. K., Gere J. M., Teoria stateczności sprężystej. Wydawnictwo Arkady, 1963.
  2. Ziegler H., Principles of structural stability, Blaisdell Publishing Company, Waltham, 1968.
  3. Gerard G., Introduction to structural stability theory, McGraw-Hill Book Company, Inc. New York 1962.
  4. Thompson J. M. T., Hunt G. W., A general theory of elastic stability, John Wiley&Sons, London, 1973.
  5. Naleszkiewicz J., Zagadnienia stateczności sprężystej, PWN Warszawa, 1958.
  6. Bleich F., Buckling strength of metal structures, McGraw-Hill Book Company, Inc. New York, 1952.
  7. Galambos, T. V., Guide to Stability Design Criteria for Metal Structures, John Wiley, New York, 1988.
  8. Brush, D. O. and Almroth, B. O., Buckling of Bars, Plates and Shell, McGraw Hill-Kogakusha, Tokyo, 1975.
  9. Britvec S. J., The stability of elastic systems, Pergamon Press Inc., New York, 1973.
  10. Brezina W., Stateczność prętów konstrukcji metalowych, Arkady, Warszawa, 1996.
  11. Dym C. L., Stability theory and its applications to structural mechanics, Norrdhoff International Publishing, Leyden, 1974.
  12. Huseyin K., Multiple parameter stability theory and its applications, Oxford University Press, New York, 1986.
  13. Huseyin, K., Nonlinear Theory of Elastic Stability, Noordhoff Int., Leyden, 1975.
  14. Pignataro M., Rizzi N., Luongo A.,  Stability, bifurcation and postcritical behaviour of elastic structures, Elsevier, Amsterdam, 1991.
  15. Simitses G. J., An introduction to the elastic stability of structures, Prentice-Hall Inc., Englewood Cliffs, 1976.
  16. Weiss S., Giżejowski M., Stateczność konstrukcji metalowych. Układy prętowe. Arkady, Warszawa, 1991.
  17. PN-90/B-03200. Konstrukcje stalowe. Obliczenia statyczne i projektowanie.

Further reading

  1. Wolmir A. S., Ustojcziwost dieformurijemych sistiem (po rosyjsku), Nauka, Moskwa, 1992.
  2. Ałfutow N. A., Osnowy razsczeta na ustojcziwost uprugich sistiem (po rosyjsku), Maszinostrojenije, Moskawa 1978.
  3. Esslinger M., Geier B., Postbuckling behavior of structures, Springer Verlag, Wien, 1975.
  4. Marcinowski J., Nieliniowa stateczność powłok sprężystych, Wydawnictwa Politechniki Wrocławskiej, Wrocław, 2000.
  5. Simitses, G., Dynamic Stability of Suddenly Loaded Structures, Springer-Verlag, New York, 1990.
  6. Waszczyszyn, Z., Cichoń, C., Radwańska, M., Stability of Structures by Finite Element Methods, Elsevier, Amsterdam, 1994.
  7. Thompson J. M. T., Hunt G. W., Instabilties and catastrophes in Science and Engineering, John Wiley&Sons, Chichester, 1982.
  8. Romanów F., Stricker L., Teisseyre J., Stateczność konstrukcji przekładkowych, Wydawnictwa Politechniki Wrocławskiej, Wrocław, 1972.

Notes


Modified by dr inż. Jakub Kostecki (last modification: 15-10-2023 23:36)