SylabUZ
Course name | Real and Complex Analysis |
Course ID | 11.1-WK-MATED-RCA-S22 |
Faculty | Faculty of Exact and Natural Sciences |
Field of study | Mathematics |
Education profile | academic |
Level of studies | Second-cycle studies leading to MS degree |
Beginning semester | winter term 2023/2024 |
Semester | 1 |
ECTS credits to win | 7 |
Course type | obligatory |
Teaching language | english |
Author of syllabus |
|
The class form | Hours per semester (full-time) | Hours per week (full-time) | Hours per semester (part-time) | Hours per week (part-time) | Form of assignment |
Lecture | 30 | 2 | - | - | Exam |
Class | 30 | 2 | - | - | Credit with grade |
The aim is to improve the acquaitance of a student of deeper facts in real analysis and give him opportunity to gain the standard knowledge in the theory of complex functions in single variable.
Average education in the basic notions and results in real analysis.
Lecture
I. MEASURE THEORY
1. Theorems of Jegorov, Lusin (4 h.).
2. Theorems of Fubini and Radon-Nikodym (4 h.).
II. THEORY OF COMPLEX FUNCTIONS
1. Complex derivative, Cauchy-Riemann equations, analytic (holomorphic) function (4 h.).
2. Curve integral of a complex function, Cauchy integral theorem, Cauchy’s integral formula ( 4 h.).
3. Expansion of an analytic function in power series, entire functions, theorem of Liouville, maximum principle, Schwarz lemma (5 h.).
4. Laurent series, singular points and their classification, residuum (5 h.).
5. Theorem of residues and their applications, meromorphic functions (4 h.).
Exercises
I. MEASURE THEORY
1. Thorems of Jegorov, Lusin (3 h.)
2. Theorems of Fubini and Radon-Nikodym (3 h.)
II. THEORY OF COMPLEX FUNCTIONS
1. Complex derivative, Cauchy-Riemann equations, analytic (holomorphic) function (4 h.).
2. Curve integral of a complex function, Cauchy integral theorem, Cauchy’s integral formula ( 6 h.).
3. Expansion of an analytic function in power series, entire functions, theorem of Liouville, maximum principle, Schwarz lemma (5 h.).
4. Laurent series, singular points and their classification, residuum (5 h.).
5. Theorem of residues and their applications, meromorphic functions (4 h.).
Conventional lecture; problem lecture
Auditorium exercises – solving standard problems enlightening the significance of the theory, exercises on applications, solving problems.
Outcome description | Outcome symbols | Methods of verification | The class form |
Passing the exam: the weighted mean of notes of exercises (40%) and the exam (60%).
A positive note of the exercises is the necessary condition to be admitted to the exam. A positive note of the exam attests the subject.
1. B.R. Gelbaum, Problems in Real and Complex Analysis, Springer, 1992.
Modified by dr Ewa Sylwestrzak-Maślanka (last modification: 10-04-2024 15:46)