SylabUZ
Nazwa przedmiotu | Advanced decision support systems |
Kod przedmiotu | 06.0-WE-AutD-AdvDecSuppSyst-Er |
Wydział | Wydział Nauk Inżynieryjno-Technicznych |
Kierunek | Automatyka i robotyka |
Profil | ogólnoakademicki |
Rodzaj studiów | Program Erasmus drugiego stopnia |
Semestr rozpoczęcia | semestr letni 2024/2025 |
Semestr | 3 |
Liczba punktów ECTS do zdobycia | 6 |
Typ przedmiotu | obowiązkowy |
Język nauczania | angielski |
Sylabus opracował |
|
Forma zajęć | Liczba godzin w semestrze (stacjonarne) | Liczba godzin w tygodniu (stacjonarne) | Liczba godzin w semestrze (niestacjonarne) | Liczba godzin w tygodniu (niestacjonarne) | Forma zaliczenia |
Wykład | 15 | 1 | - | - | Zaliczenie na ocenę |
Laboratorium | 15 | 1 | - | - | Zaliczenie na ocenę |
Decision support systems, Artificial intelligence methods.
Making decisions in the conditions of incomplete, uncertain and imprecise information. Parametric and nonparametric decision problems. Application of expert systems. Theory of possibilities. Application of rough and fuzzy sets in knowledge bases. Decision tree optimization. Discovering knowledge in databases, data mining. Preliminary preparation of data. The use of soft calculations in extracting knowledge from data (data mining).
Application of neural networks in decision making. Neural networks in grouping and classification. Extraction of knowledge from data using neural networks.
Fuzzy decision systems. Neurofuzzy systems in creating knowledge base. Fuzzy classifiers. Various types of neuro-fuzzy decision-making systems.
The use of rough sets in decision support. Rough sets based on dominance. Induction of classification patterns in the form of decision rules.
Designing decision support systems. Hybrid decision systems.
Lecture, laboratory exercises
Opis efektu | Symbole efektów | Metody weryfikacji | Forma zajęć |
Lecture – the main condition to get a pass is a sufficient mark in a written or oral exam.
Laboratory – the passing condition is to obtain positive marks from all laboratory exercises to be planned during the semester.
Calculation of the final grade: lecture 50% + laboratory 50%
J. Łęski, Systemy neuronowo-rozmyte, Wydawnictwa Naukowo-Techniczne, Warszawa, 2008.
2. R. K. Nowicki, Rozmyte systemy decyzyjne w zadaniach z ograniczoną wiedzą, Akademicka Oficyna Wydawnicza Exit, Warszawa, 2009.
3. D. Rutkowska, M. Piliński, L. Rutkowski, Sieci neuronowe, algorytmy genetyczne i zbiory rozmyte, Wydawnictwo Naukowe PWN, Warszawa, 1999.
4. J. Surma J.: Business Intelligence Systemy wspomagania decyzji biznesowych, WN PWN SA, Warszawa 2012.
5. D.T. Laros: Metody i modele eksploracji danych. WN PWN SA, Warszawa 2012.
Zmodyfikowane przez dr hab. inż. Wojciech Paszke, prof. UZ (ostatnia modyfikacja: 09-04-2024 14:14)