SylabUZ
Nazwa przedmiotu | Operational research |
Kod przedmiotu | 11.9-WE-INFD-OperRes-Er |
Wydział | Wydział Nauk Inżynieryjno-Technicznych |
Kierunek | Informatyka |
Profil | ogólnoakademicki |
Rodzaj studiów | Program Erasmus drugiego stopnia |
Semestr rozpoczęcia | semestr letni 2024/2025 |
Semestr | 1 |
Liczba punktów ECTS do zdobycia | 6 |
Typ przedmiotu | obowiązkowy |
Język nauczania | angielski |
Sylabus opracował |
|
Forma zajęć | Liczba godzin w semestrze (stacjonarne) | Liczba godzin w tygodniu (stacjonarne) | Liczba godzin w semestrze (niestacjonarne) | Liczba godzin w tygodniu (niestacjonarne) | Forma zaliczenia |
Wykład | 30 | 2 | - | - | Egzamin |
Laboratorium | 30 | 2 | - | - | Zaliczenie na ocenę |
Mathematical analysis, Linear algebra and analytic geometry
Linear programming tasks (LPT). Standard formulation of LPT. Method of elementary solutions and simplex algorithm. Optimal choice for production assortment. Mixture problem. Technological process choice. Rational programming. Transportation and assignment problems. Two-person zero sum games and games with nature.
Network programming. Network models with determined logical structure. CPM and PERT methods. Time-cost analysis. CPM_COST and PERT-COST methods.
Non-linear programming tasks (NPT) – optimality conditions. Convex sets and functions. Necessary and sufficient conditions for the solution existence in the case without constraints. Lagrange multiplayers method. Extrema of the function with equality and inequality constraints. Kuhn-Tucker conditions. Constraints regularity. Conditions of an equilibrium point existence. Least squares method. Quadratic programming.
Computational methods for solving NPT. Directional search methods: Fibonacci, golden search, Kiefer, Powell and Davidon. Method of basic search: Hooke-Jeeves and Nelder-Mead. Continuous and discrete gradient algorithm. Newton method. Gauss-Newton and Levenberg-Marquardt algorithms. Elementary methods of feasible direction: Gauss-Seidel, steepest decent, conjugate gradient of Fletcher-Reeves, variable metric of Davidon-Fletcher-Powell. Searching for minimum in the case of constraints: internal, external and mixed penalty functions, projected gradient, sequential quadratic programming and admissible directions method. Elements of dynamic programming.
Practical issues. Simplification and elimination of constraints. Discontinuity elimination. Scaling. Numerical approximation of gradient. Usage of numerical packages. Presentation of methods implemented in popular environments for symbolic and numerical processing.
Lecture;
Laboratory exercises.
Opis efektu | Symbole efektów | Metody weryfikacji | Forma zajęć |
Lecture – the passing condition is to obtain positive mark from the exam;
Laboratory – the passing condition is to obtain positive marks from all laboratory exercises to be planned within the laboratory schedule.
Calculation of the final grade: lecture 50% + laboratory 50%
1. Winston W.: Operations Research Applications and Algorithms, Wadsworth Publishing Company, 1997.
Zmodyfikowane przez dr hab. inż. Maciej Patan, prof. UZ (ostatnia modyfikacja: 09-04-2024 18:31)