SylabUZ
Nazwa przedmiotu | Logic and Set Theory |
Kod przedmiotu | 11.1-WK-MATP-LST-S22 |
Wydział | Wydział Nauk Ścisłych i Przyrodniczych |
Kierunek | WMIiE - oferta ERASMUS |
Profil | - |
Rodzaj studiów | Program Erasmus |
Semestr rozpoczęcia | semestr zimowy 2024/2025 |
Semestr | 1 |
Liczba punktów ECTS do zdobycia | 6 |
Typ przedmiotu | obieralny |
Język nauczania | angielski |
Sylabus opracował |
|
Forma zajęć | Liczba godzin w semestrze (stacjonarne) | Liczba godzin w tygodniu (stacjonarne) | Liczba godzin w semestrze (niestacjonarne) | Liczba godzin w tygodniu (niestacjonarne) | Forma zaliczenia |
Wykład | 30 | 2 | - | - | Egzamin |
Ćwiczenia | 30 | 2 | - | - | Zaliczenie na ocenę |
Familiarize students with structures underlying contemporary mathematics.
Secondary school mathematics.
Lecture
1. Propositional calculus Logical connectives. Boolean valuations. Tautologies. Rules of inference. (4 godz.)
2. Sets Membership relation, set inclusion; equality of sets. Operations on sets: union, intersection, set difference, symmetric difference, complement. De Morgan laws. Cartesian product of two sets. (4h)
3. Quantifiers Definition, basic properties. Operations on arbitrary families of sets. (4h)
4. Binary relations and functions Domain and codomain. Frequently occurring relations. Function as a relation. Indexed families of sets: uions, intersections. Sentential functions – schema of specification, Russel’s paradox. Injections, surjections, bijections; restriction and extension of a function; composition of a function; inverse functions. Images and counterimages. Methods of defining functions. (6h)
5. Mathematical induction Peano axioms . The principle o mathematical induction. Alternative formulations. Recurrent sequences. Counting finite sets; exclusion-inclusion principle. (6h)
6. Relations (cont.) Equivalence relations: Equivalence classes vs partitions. Quotients constructions: rational numbers. Generalized products; generalized relations. (4h)
7. Cardinality of a set
Countable sets: the integers, the rational and algebraic numbers. Cantor–Bernstein theorem. Cantor theorem on power sets. Uncountability of the reals; other sets equinumerous with continuum: e.g. cardinality of a square. Continuum hypothesis. Cardinal numbers (brief information). (6h)
Class
1. Propositional calculus Computing the logical value of a propositional expression for given values of its logical variables. Checking whether a given propositional expression is a tautology. Equivalent propositions – expressing a proposition in an equivalent form with the use of given connectives. (4h)
2. Sets Algebra of sets: checking whether two algebraic formulas involving sets and operations on sets represent the same set. Simple laws and their proofs. (2h)
3. Quantifiers Writing down theorems using quantifiers and logic symbols. (4h)
4. Relations and functions Checking properties of relations and functions. Finding domain and counterdomain of a function (relation). Compositions of functions. Manipulating with indexed families of sets. Images and counterimages. (4h)
5. Class test (2h)
6. Mathematical induction Examples of reasoning by induction. Functions defined inductively – finding their values and checking properties. (4h)
7. Relations (cont.) Verifying whether a given relation is an equivalence. Applications of equivalence relations to simple algebraic constructions.(4h)
8. Cardinality Comparing the cardinalities of two sets. Examples of countable and uncountable sets (Cantor’s set). (4h)
10. Class test (2h)
Traditional lecturing, solving problems under the supervision of the instructor.
Opis efektu | Symbole efektów | Metody weryfikacji | Forma zajęć |
1. Class tests with problems of diverse difficulty helping to assess whether a student achieved minimal outcomes.
2. Written examination.
Final grade = 0.5 x class grade + 0,5 x exam grade. In order to be allowed to take the exam a student has to have a positive class grade. In order to pass the exam a student has to have a positive exam grade.
1. D. Makinson, Sets, Logic and Maths for Computing, Springer, 2008.
2. K. Kuratowski, A.Mostowski, Set theory, North-Holland, 1976.
1. M. Aigner, G. M. Ziegler, Proofs from the BOOK, Springer 2004.
Zmodyfikowane przez dr Dorota Głazowska (ostatnia modyfikacja: 18-04-2024 13:08)