SylabUZ

Generate PDF for this page

Automated Medical Diagnosis System - course description

General information
Course name Automated Medical Diagnosis System
Course ID 06.9-WM-ER-IB-31_18
Faculty Faculty of Engineering and Technical Sciences
Field of study WM - oferta ERASMUS
Education profile -
Level of studies Erasmus programme
Beginning semester winter term 2018/2019
Course information
Semester 1
ECTS credits to win 5
Course type obligatory
Teaching language english
Author of syllabus
  • dr hab. inż. Katarzyna Arkusz, prof. UZ
  • dr hab. inż. Marek Kowal, prof. UZ
Classes forms
The class form Hours per semester (full-time) Hours per week (full-time) Hours per semester (part-time) Hours per week (part-time) Form of assignment
Lecture 30 2 - - Credit with grade
Laboratory 30 2 - - Credit with grade

Aim of the course

- familiarize students with the methods of data collection used in medical diagnosis and the development of skills in the pre-processing of medical data

- familiarize students with the architecture of medical data warehouse and development of skills in the designing and application of analytical systems for medical data

- familiarize students with the methods used to build automated medical diagnosis systems and development of skills allowing the use of decision support and data mining algorithms

Prerequisites

medical imaging techniques, digital signal processing, statistical methods of data analysis

Scope

Methods of data acquisition and processing for automated medical diagnosis.

Radiological imaging. Virtual microscopy. Application of image segmentation algorithms for the extraction of morphometric features. Feature selection methods. Discovering outliers. Completing the missing data.

Methods of storage and analysis of medical data. Medical data warehouse architecture. Analytical systems. Multidimensional data structures. Statistical analysis. Reporting methods and services. Analytical systems review. Overview of public repositories of medical data.

Medical decision support systems. Expert systems. Methods of knowledge representation. Methods of knowledge discovery. Classification algorithms. Artificial intelligence methods.

Medical decision support systems - case studies. Integration of decision support systems with picture archiving and communication systems.

Teaching methods

Lectures - conventional lecture, discussion

Laboratory - laboratory exercises, case studies

Learning outcomes and methods of theirs verification

Outcome description Outcome symbols Methods of verification The class form

Assignment conditions

Recommended reading

1.   Piętka E.: Zintegrowany system informacyjny w pracy szpitala, PWN, 2004.

2.   Rudowski R. (red.): Informatyka medyczna, PWN, 2003.

3.   Cytowski J., Gielecki J., Gola A.,: Cyfrowe przetwarzanie obrazów medycznych. Algorytmy technologie zastosowania., AOW EXIT,2008

4.   Nieniewski M.: Segmentacja obrazów cyfrowych. Metody segmentacji wododziałowej. AOW EXIT, 2005.  

5.   Hand D., Mannila H., Smyth P.: Eksploracja danych. WNT, 2005.

6.   Kisielnicki J., Pańkowska M., Sroka H.: Zintegrowane systemy informatyczne. Dobre praktyki wdrożeń, Warszawa, PWN, 2011.

7.   Larose T. D.: Odkrywanie wiedzy z danych, Warszawa, PWN, 2006.

8.   Larose D. T.: Metody i modele eksploracji danych, Warszawa, PWN, 2008.

9.   Pelikant A.: Hurtownie danych. Od przetwarzania analitycznego do raportowania, Helion, 2011.

Further reading

10.    Kącki E., Kulikowski J.L., Nowakowski A., Waniewski E. (red.): Systemy komputerowe i teleinformatyczne w służbie zdrowia. AOW EXIT, 2000.

11.    Zajdel R., Kęcki E., Szczepaniak P., Kurzyński M.: Kompendium informatyki medycznej, Alfa-Medica Press, 2003.

12.    Cierniak J.: Tomografia komputerowa. Budowa urządzeń CT. Algorytmy rekonstrukcyjne.

13.    Klonecki W.: Statystyka dla inżynierów. PWN. 1999.

14.    Cantor A.B.: Survival Analysis Techniques for Medical Research. SAS, 2007.

15.    Suri J. S., Setarehdan K, Singh S. (red.): Advanced Algorithmic Approaches to Medical Image Segmentation. Springer, 2002.

Notes


Modified by dr hab. inż. Katarzyna Arkusz, prof. UZ (last modification: 19-04-2018 11:47)