SylabUZ

Generate PDF for this page

Mechanics and Strength of Materials - course description

General information
Course name Mechanics and Strength of Materials
Course ID 06.9-WM-ER-IB-37_18
Faculty Faculty of Engineering and Technical Sciences
Field of study WM - oferta ERASMUS
Education profile -
Level of studies Erasmus programme
Beginning semester winter term 2018/2019
Course information
Semester 2
ECTS credits to win 5
Course type obligatory
Teaching language english
Author of syllabus
  • prof. dr hab. inż. Romuald Będziński
Classes forms
The class form Hours per semester (full-time) Hours per week (full-time) Hours per semester (part-time) Hours per week (part-time) Form of assignment
Lecture 30 2 - - Exam
Laboratory 15 1 - - Credit with grade
Class 15 1 - - Credit with grade

Aim of the course

The aim of the course is to familiarize students with problem-solving methodology based on the laws of mechanics and analysis of the strength found in mechanical engineering.

Prerequisites

General knowledge of differential calculus, integral calculus, operations on the vectors.

Scope

Lecture

The basic notions and the principles of statics. Plane and spatial arrangement of convergent forces. Equilibrium plane and spatial arrangement of convergent forces. The basis of reduction of arrangement forces. The plane arrangements of strengths without friction (reduction of plane arrangement of forces, equilibrium of any plane arrangement of forces equilibrium of an arrangement consisting of rigid bodies). Friction and friction laws. Arbitrary spatial arrangement of forces. Reduction of spatial arrangement of forces. Basic notions of strength of materials. Objectives and tasks of the strength of materials. The types of loads. Types of deformations. Internal forces, de Saint Venant principle. Tension and compression of materials. Hooke's law, Young's modulus, Poisson's ratio. Principle of superposition, allowable stress, the safety factor. Statically determinate and staticallyindeterminate systems tension or compression of rods systems. Analysis of stress and strain at the point, one-, two- and three-direction stresses and strains states. General components and main components of the stresses. Mohr’s circle. Generalized Hooke's law for two- and three- direction stresses. Shear, strain and shear stress. Hooke's law in shear. Static moments. Moments of inertia of plane areas. Steiner formulae. Principal axes and principal moments of inertia, Mohr's circle for the moments of inertia. Torsion of circular shafts. Analysis of stresses and strains in torsion. Calculation of springs. Internal forces in rods and beams. Bending of straight rods.

Class

Solving classes based on lectures and source materials, in two parts: mechanics (vectors, constraints, reactions, coplanar forces: concurrent force systems, arbitrary force systems, determination of resultant moment, couples of forces, calculation of values of reactions in bearings of beams, calculation of internal forces in truss members of plane trusses) and strength of materials (tension, compression, shearing, bending, torsion).

Laboratory

Main topics: methods of measurement of hardness (Brinell, Rockwell and Vickers), static tensile metals, impact bending tests, determination of the static coefficient of friction, determination of the characteristics and stiffness of springs, dynamic balancing of machine parts with balancer.

Teaching methods

Lectures with audiovisual aids. Solving classes. Working with the book. Group work in laboratory classes.

Learning outcomes and methods of theirs verification

Outcome description Outcome symbols Methods of verification The class form

Assignment conditions

Lecture

Exam

Class

Grade

Laboratory

Grade (received positive ratings of reports carried out laboratory)

Evaluation of the course is getting positive ratings from all forms: Lecture, Class, Laboratory

The final grade received by the student is the arithmetic mean of the above grades.

Recommended reading

  • 1. Niezgodziński M. E., Niezgodziński T., Wytrzymałość materiałów, 1979 PWN wyd. XI.

    2. Misiak J., Mechanika ogólna – Statyka i kinematyka, 1993 WNT wydanie IV.

    3. Misiak J., Zadania z mechaniki ogólnej. Statyka, 1994 WNT wydanie V.

    4. Walicki E., Smak T., Falicki J., Mechanika. Wprowadzenie teoretyczne do laboratorium. 2005, Oficyna Wydawnicza Uniwersytetu Zielonogórskiego.

    5. Walicki E., Smak T., Falicki J., Mechanika. Materiały pomocnicze do ćwiczeń laboratoryjnych. 2005, Oficyna Wydawnicza Uniwersytetu Zielonogórskiego.

    6. Walicka A, Walicki E, Michalski D, Jurczak P, Falicki J., Wytrzymałość materiałów / T. 1: Podręcznik akademicki. Teoria, wzory i tablice do ćwiczeń laboratoryjnych. – Zielona Góra: Oficyna Wydawnicza Uniwersytetu Zielonogórskiego, 2008.

    7. Walicka A, Walicki E, Michalski D, Jurczak P, Falicki J., Wytrzymałość materiałów T. 2: Ćwiczenia laboratoryjne – Materiały pomocnicze. - Zielona Góra: Oficyna Wydawnicza Uniwersytetu Zielonogórskiego, 2008.

Further reading

8. Rżysko J., Statyka i wytrzymałość materiałów , 1979 PWN.

9. Jakubowicz A., Orłoś Z., Wytrzymałość materiałów, 1984 WNT.

10. Gubrynowiczowa J., Wytrzymałość materiałów, 1968 PWN.

11. Leyko J., Mechanika ogólna. t. I, 1980 PWN wydanie VII.

12. Leyko J., Zbiór zadań z mechaniki ogólnej. t. I, 1978 PWN wydanie IV.

13. Banasiak M., Grossman K., Trombski M., Zbiór zadań z wytrzymałości materiałów, 1998,

Notes


Modified by dr inż. Ewa Paradowska (last modification: 19-04-2018 14:48)