SylabUZ

Generate PDF for this page

Mathematical Analysis 1 - course description

General information
Course name Mathematical Analysis 1
Course ID 11.1-WK-MATP-AM1-S21
Faculty Faculty of Mathematics, Computer Science and Econometrics
Field of study Mathematics
Education profile academic
Level of studies First-cycle studies leading to Bachelor's degree
Beginning semester winter term 2021/2022
Course information
Semester 1
ECTS credits to win 10
Course type obligatory
Teaching language polish
Author of syllabus
  • prof. dr hab. Witold Jarczyk
Classes forms
The class form Hours per semester (full-time) Hours per week (full-time) Hours per semester (part-time) Hours per week (part-time) Form of assignment
Class 60 4 - - Credit with grade
Lecture 60 4 - - Exam

Aim of the course

Zapoznanie studenta z podstawowymi pojęciami analizy matematycznej.  Wśród nich: zbieżność ciągu i szeregu, granica, ciągłość i pochodna funkcji.Ważne będą także związki między tymi pojęciami i przykładowe zastosowania poznanej teorii.

Prerequisites

Znajomość matematyki w zakresie szkoły ponadgimnazjalnej.

Scope

Wykład

I. Liczby rzeczywiste

  1. Aksjomatyka liczb rzeczywistych. Kresy (4 godz.)
  2. Pierwiastek liczby nieujemnej (1 godz.)
  3. Rozszerzony zbiór liczb rzeczywistych (1 godz.)

II. Funkcje elementarne I

  1. Wielomiany i funkcje wymierne. Funkcje potęgowe zmiennej rzeczywistej o wykładniku wymiernym (1 godz.)
  2. Funkcje trygonometryczne zmiennej rzeczywistej (2 godz.)

III. Ciągi i szeregi liczbowe

  1. Ciągi liczbowe i ich zbieżność. Ciągi ograniczone. Warunek Cauchy’ego (2 godz.)
  2. Obliczanie granic ciągów (2 godz.)
  3. Granica górna i granica dolna ciągu (1 godz.)
  4. Szeregi liczbowe – podstawy (2 godz.)
  5. Szeregi o wyrazach nieujemnych. Kryteria porównawcze. Kryteria Cauchy’ego i d’Alemberta (3 godz.)
  6. Zbieżność bezwzględna, bezwarunkowa i warunkowa. Twierdzenie Riemanna (2 godz.)
  7. Mnożenie szeregów. Twierdzenie Mertensa (2 godz.)

IV. Granica i ciągłość funkcji jednej zmiennej

  1. Granica funkcji (2 godz.)
  2. Ciągłość. Twierdzenie Darboux (1 godz.)
  3. Ekstrema absolutne. Twierdzenie Weierstrassa (1 godz.)
  4. Granica a ciągłość (1 godz.)
  5. Granice funkcji zmiennej rzeczywistej. Granice jednostronne (1 godz.)
  6. Granice funkcji rzeczywistych. Twierdzenie o trzech funkcjach (1 godz.)
  7. Asymptoty (1 godz.)

V. Ciągi i szeregi funkcyjne

  1. Zbieżność punktowa i jednostajna (3 godz.)
  2. Szeregi funkcyjne. Kryteria Weierstrassa i Dirichleta (1 godz.)
  3. Szeregi potęgowe. Twierdzenie Cauchy’ego-Hadamarda (1 godz.)

VI. Funkcje elementarne II

  1. Funkcje wykładnicze. Funkcje logarytmiczne zmiennej rzeczywistej (1 godz.)
  2. Funkcje potęgowe zmiennej rzeczywistej (1 godz.)
  3. Funkcje trygonometryczne i cyklometryczne (1 godz.)

VII. Funkcje monotoniczne i wypukłe

  1. Funkcje monotoniczne (2 godz.)
  2. Funkcje wypukłe (informacyjnie; część materiału, wskazana przez wykładowcę, powinna być opanowana przez studenta samodzielnie, na podstawie materiałów wskazanych przez prowadzącego) (1 godz.)

VIII. Elementarny rachunek różniczkowy

  1. Pochodna i jej interpretacja. Różniczkowalność funkcji jednej zmiennej rzeczywistej. Podstawowe wzory związane z pochodnymi. Pochodne funkcji elementarnych (3 godz.)
  2. Twierdzenia o wartości średniej Rolle’a, Cauchy’ego i Lagrange’a. Charakteryzacja monotoniczności (2 godz.)
  3. Reguła de L’Hospitala (1 godz.)
  4. Pochodne wyższych rzędów i wzór Taylora (2 godz.)
  5. Ekstrema lokalne (1 godz.)
  6. Charakteryzacja wypukłości funkcji (1 godz.)
  7. Zbieżność jednostajna a różniczkowanie. Różniczkowanie szeregów potęgowych. Szereg Taylora (2  godz.)
  8. Różniczkowalność funkcji elementarnych (1 godz.)
  9. Funkcja pierwotna (2 godz.)
  10. Algorytm całkowania funkcji wymiernych (2 godz.)
  11. Pochodna funkcji zmiennej zespolonej (informacyjnie) (1 godz.)

IX. Zastosowania rachunku różniczkowego (materiał do opracowania przez studentów w zespołach, w formie pisemnej, na podstawie materiałów wskazanych przez wykładowcę)

  1. Ruch prostoliniowy
  2. Zastosowania w geometrii
  3. Różniczka i obliczenia przybliżone
  4. Metoda Newtona
  5. Zastosowania w ekonomii

Ćwiczenia

I. Liczby rzeczywiste

  1. Stosowanie aksjomatów zbioru liczb rzeczywistych w prostych dowodach (2 godz.)
  2. Podstawowe własności zbiorów liczb wymiernych i niewymiernych. Wyznaczanie kresów zbiorów liczb rzeczywistych (3 godz.)
  3. Symbole nieoznaczone w rozszerzonym zbiorze liczb rzeczywistych (1 godz.)

II. Funkcje elementarne I

  1. Przypomnienie podstawowych własności funkcji trygonometrycznych. Ich wykresy (2 godz.)
  2. Przykłady występowania funkcji elementarnych w prostych zagadnieniach poza matematyką (1 godz.)

III. Ciągi i szeregi liczbowe

  1. Badanie zbieżności ciągów liczbowych przy pomocy definicji i prostych przekształceń algebraicznych (2 godz.)
  2. Badanie zbieżności poprzez warunek Cauchy’ego (1 godz.)
  3. Badanie zbieżności ciągów monotonicznych i ograniczonych. Liczba Napera-Eulera (2 godz.)
  4. Ciągi rekurencyjne.  Zastosowanie twierdzenia o trzech ciągach (1 godz.)
  5. Wyznaczanie granic górnych i dolnych (1 godz.)
  6. Badanie zbieżności szeregów liczbowych.  Stosowanie kryteriów zbieżności (5 godz.)
  7. Obliczanie sumy szeregu (1 godz.)
  8. Obliczanie iloczynu Cauchy’ego szeregów (1 godz.)

Kolokwium (2 godz.)

IV. Granica i ciągłość funkcji jednej zmiennej

  1. Badanie istnienia i wyznaczanie wartości granicy funkcji (4 godz.)
  2. Badanie ciągłości funkcji (2 godz.)

V. Ciągi i szeregi funkcyjne

  1. Badanie zbieżności jednostajnej ciągów funkcyjnych (2 godz.)
  2. Badanie zbieżności jednostajnej szeregów funkcyjnych (1 godz.)
  3. Ćwiczenie zastosowania kryterium Weierstrassa do badania zbieżności jednostajnej szeregów funkcyjnych (1 godz.)
  4. Wyznaczanie środka i promienia zbieżności szeregu potęgowego (3 godz.)

VI. Funkcje elementarne II

  1. Własności funkcji wykładniczych i trygonometrycznych zmiennej zespolonej – ćwiczenie prostego dowodzenia rachunkowego (2 godz.)

Kolokwium (2 godz.)

VII. Funkcje monotoniczne i wypukłe

  1. Badanie wypukłości funkcji przy użyciu definicji (1 godz.)
  2. Dowodzenie pewnych nierówności poprzez sprawdzenie wypukłości stosownej funkcji (1 godz.)

VIII. Elementarny rachunek różniczkowy I

  1. Obliczanie pochodnych z definicji.  Badanie różniczkowalności.  Wyznaczanie stycznej i normalnej do krzywej (5 godz.)
  2. Stosowanie twierdzeń o wartości średniej, badanie monotoniczności funkcji różniczkowalnych, dowodzenie nierówności (3 godz.)
  3. Obliczanie granic funkcji przy pomocy reguły de L’Hospitala (2 godz.)
  4. Stosowanie wzoru Taylora do przybliżania wartości funkcji (2 godz.)
  5. Rozwijanie funkcji w szereg Taylora (2 godz.)

Kolokwium (2 godz.)

Teaching methods

Tradycyjny wykład; ćwiczenia, w ramach których studenci rozwiązują zadania i dyskutują, a także przygotowują notki biograficzne matematyków, których nazwiska pojawiają się na wykładzie; praca w grupach; praca z książką i przy pomocy internetu.  W razie konieczności (stwierdzonej w zarządzeniu Rektora UZ) zajęcia mogą być prowadzone zdalnie (online).

Learning outcomes and methods of theirs verification

Outcome description Outcome symbols Methods of verification The class form

Assignment conditions

  1. Trzy kolokwia z zadaniami o zróżnicowanym stopniu trudności, pozwalającymi na sprawdzenie, czy student osiągnął efekty kształcenia w stopniu minimalnym.
  2. Egzamin w postaci testu z progami punktowymi.

Ocena z przedmiotu jest średnią arytmetyczną oceny z ćwiczeń i oceny z egzaminu. Warunkiem przystąpienia do egzaminu jest pozytywna ocena z ćwiczeń. Warunkiem zaliczenia przedmiotu jest pozytywna ocena z egzaminu.

Recommended reading

  1. Witold Jarczyk,  Notatki do wykładu z analizy matematycznej, http://staff.uz.zgora.pl/wjarczyk/materialy.html
  2. Witold Jarczyk, Zadania z analizy matematycznej, http://staff.uz.zgora.pl/wjarczyk/materialy.html

Further reading

  1. Józef Banaś, Stanisław Wędrychowicz, Zbiór zadań z analizy matematycznej, Wydawnictwo Naukowo-Techniczne, Warszawa, 1993.
  2. Witold Kołodziej, Analiza matematyczna, Państwowe Wydawnictwo Naukowe, Warszawa, 1986.
  3. Walter Rudin, Podstawy analizy matematycznej,  Wydawnictwo Naukowe PWN, Warszawa, 2002.

Notes


Modified by prof. dr hab. Witold Jarczyk (last modification: 18-05-2021 16:06)