SylabUZ

Generate PDF for this page

Strength of Materials II - course description

General information
Course name Strength of Materials II
Course ID 06.1-WM-ER-MiBM-10_18
Faculty Faculty of Mechanical Engineering
Field of study WM - oferta ERASMUS
Education profile -
Level of studies Erasmus programme
Beginning semester winter term 2023/2024
Course information
Semester 1
ECTS credits to win 5
Course type obligatory
Teaching language english
Author of syllabus
  • dr inż. Paweł Jurczak
  • dr inż. Jarosław Falicki
Classes forms
The class form Hours per semester (full-time) Hours per week (full-time) Hours per semester (part-time) Hours per week (part-time) Form of assignment
Lecture 30 2 - - Exam
Laboratory 15 1 - - Credit with grade

Aim of the course

The aim of the course is to introduce students to problem-solving methodology and analysis of the strength found in mechanical engineering

Prerequisites

Strength of Materials I, Technical Mechanics I, Mathematics.

Scope

LECTURE

Determination of beam bending deformations. Analytical method for determining of a bending line of beams. The Clebsch method. Stability of the compressed rods. Elastic buckling of straight bars. Euler's formula. Tetmajer and Johnson- Ostenfeld formulas. Slender rods compression and bending. Beams on elastic fundation. Strongly curved rods bending. Issues a static indeterminable bending. Single and multi-span beams. The equation of three moments. Statically indeterminable frame. Energy methods. Clapeyron system. Calculation of deformations using the Castigliano theorem. Menabrea’s theorem. Calculation of statically indeterminable beams and frames using the Menabrea’s theorem. Bending of plates.  Spherical, cylindrical and conical tank. The stresses in thick-walled tanks.

LABORATORY

Laboratory topics:

Measurement of the Young modulus by extensometric method,

Measurement of the Young modulus by method of retaining extensometry

Diagonal bending,

Examination of the compressed rod buckling

Examination of a circular ring strain

Correction exercises, tests.

Teaching methods

Lectures with audiovisual aids. Solving classes. Working with the book. Group work in laboratory classes

Learning outcomes and methods of theirs verification

Outcome description Outcome symbols Methods of verification The class form

Assignment conditions

Lecture

positive evaluation of the test

Laboratory

received positive ratings of reports carried out laboratory

Evaluation of the course is getting positive ratings from all forms: Lecture, Laboratory

Recommended reading

1. Mott Robert L. and Untener Joseph A.: Applied Strength of Materials, CRC PRESS Taylor&Francis Group, 2021.
2. Limbrunner G.,  D'Allaird C., Spiegel L.: Strength of Materials: Fundamentals and Applications, Cambridge, 2015.
3. Case J.,  Chilver A.Ch., Ross C.T.F., Strength of Materials and Structures, Arnold, the Hodder Headline Group, 1999.
4. da Silva V.D., Mechanics and Strength of Materials, Springer-Verlag, Berlin, Heidelberg, 2006.
5. Kobayashi T., Strength and Toughness of Materials, Springer-Verlag Tokyo, 2004.

 

 

Further reading

1.     Rżysko J.: Statyka i wytrzymałość materiałów , 1979 PWN,

2.     Jakubowicz A., Orłoś Z.: Wytrzymałość materiałów, 1984 WNT,

3.     Gubrynowiczowa J.: Wytrzymałość materiałów, 1968 PWN.

4.     Banasiak M., Grossman K., Trombski M.: Zbiór zadań z wytrzymałości materiałów, 1998, PWN.

5.     Walicka A, Walicki E, Michalski D, Jurczak P, Falicki J., Wytrzymałość materiałów / T. 1: Podręcznik akademicki. Teoria, wzory i tablice do ćwiczeń laboratoryjnych. - Zielona Góra : Oficyna Wydawnicza Uniwersytetu Zielonogórskiego, 2008

6.     Walicka A, Walicki E, Michalski D, Jurczak P, Falicki J., Wytrzymałość materiałów T. 2: Ćwiczenia laboratoryjne – Materiały pomocnicze. - Zielona Góra : Oficyna Wydawnicza Uniwersytetu Zielonogórskiego, 2008.

7. Niezgodziński M. E., Niezgodziński T., Wytrzymałość materiałów, PWN, 2022,

 

Notes


Modified by dr inż. Paweł Jurczak (last modification: 05-06-2023 11:44)