SylabUZ

Generate PDF for this page

Optimization methods - course description

General information
Course name Optimization methods
Course ID 11.9-WE-AutD-OptimMeth-Er
Faculty Faculty of Computer Science, Electrical Engineering and Automatics
Field of study WIEiA - oferta ERASMUS / Automatic Control and Robotics
Education profile -
Level of studies Second-cycle Erasmus programme
Beginning semester winter term 2018/2019
Course information
Semester 1
ECTS credits to win 6
Course type obligatory
Teaching language english
Author of syllabus
  • prof. dr hab. inż. Andrzej Obuchowicz
Classes forms
The class form Hours per semester (full-time) Hours per week (full-time) Hours per semester (part-time) Hours per week (part-time) Form of assignment
Lecture 30 2 - - Exam
Laboratory 30 2 - - Credit with grade

Aim of the course

  • to familiarize students with the basic techniques of linear and nonlinear programming

  • to develop students' skills in the specification of optimization tasks in engineering design tasks and to solve them using numerical packages

Prerequisites

Mathematical analysis, Linear algebra with analytical geometry, Numerical methods

Scope

Linear programming tasks (ZPL). Classic, standard, and canonical ZPL characters. The geometric method, base solutions, and simplex algorithm. Quotient programming. Transport and allocation problems.

Nonlinear programming (ZPN) tasks - conditions for optimality. Convex sets and functions. Necessary and sufficient conditions for the existence of an extreme function without restrictions. Lagrange multipliers method. Extrema of functions in the presence of equality and inequality constraints. Karush-Kuhn-Tucker conditions (KKT). The regularity of restrictions. Conditions for the existence of a saddle point. Square programming.

Computational methods for solving ZPN. Methods of searching the minimum towards Fibonacci methods, the golden ratio, Kiefer, Powell, and Davidon. Simple search methods: Hooke-Jeeves and Nelder-Mead methods. Continuous and discrete gradient algorithm. Newton's method. Gauss-Newton and Levenberg-Marquardt methods. Basic methods of improvement directions: Gauss-Seidel methods, fastest decrease, Fletcher-Reeves conjugate gradients, variable Davidon-Fletcher-Powell metrics. Searching for the minimum under restrictive conditions: methods of internal, external and mixed punishment, gradient projection method, sequential square programming method, methods of acceptable directions.

Basics of discrete and mixed optimization. Integer programming. Problems of shortest routes and maximum flow. Elements of dynamic programming.

Global Optimization. Stochastic optimization. Adaptive random search. Metaheuristic methods: simulated annealing algorithm, evolutionary algorithms, particle swarm optimization.

Multi-criteria optimization and adaptation in non-stationary environments. Paretooptymlaność. Types of non-stationary environments, classification of adaptive problems.

Practical issues. Simplification and elimination of restrictions. Elimination of discontinuities. Scaling the task. Numeric zooming of the gradient. Use of library procedures. Review of selected libraries of optimization procedures. Discussion of the methods implemented in popular numerical and symbolic processing systems.

Teaching methods

wykład: wykład konwencjonalny

laboratorium: ćwiczenia laboratoryjne

Learning outcomes and methods of theirs verification

Outcome description Outcome symbols Methods of verification The class form

Assignment conditions

Wykład - warunkiem zaliczenia jest uzyskanie pozytywnej oceny z egzaminu przeprowadzonego w formie pisemnej lub ustnej

Laboratorium - warunkiem zaliczenia jest uzyskanie pozytywnych ocen ze wszystkich ćwiczeń laboratoryjnych, przewidzianych do realizacji w ramach programu laboratorium

Składowe oceny końcowej = wykład: 50% + laboratorium: 50%

Recommended reading

  1. Kukuła K.(red.): Badania operacyjne w przykładach i zadaniach, PWN, Warszawa, 2006
  2. Bertsekas D.: Nonlinear programming, Athena Scientific, 2004
  3. Ignasiak E.(red.): Badania operacyjne, PWN, Warszawa, 2001
  4. Kusiak J., Danielewska-Tułecka A., Oprocha P.: Optymalizacja. Wybrane metody z przykładami zastosowań, PWN, 2009

Further reading

  1. Bertsekas D.: Convex Analysis and Optimization, Athena Scientific, 2003
  2. Spall J.: Introduction to Stochastic Search and Optimization: Estimation, Simulation and Control, Wiley InterScience, 2003

Notes


Modified by dr hab. inż. Wojciech Paszke, prof. UZ (last modification: 29-04-2020 11:52)