SylabUZ

Generate PDF for this page

Algorithms and data structures - course description

General information
Course name Algorithms and data structures
Course ID 11.3-WE-INFP-AlgIStrDat-Er
Faculty Faculty of Engineering and Technical Sciences
Field of study WIEiA - oferta ERASMUS / Informatics
Education profile -
Level of studies First-cycle Erasmus programme
Beginning semester winter term 2018/2019
Course information
Semester 1
ECTS credits to win 5
Course type obligatory
Teaching language english
Author of syllabus
  • prof. dr hab. inż. Andrzej Obuchowicz
Classes forms
The class form Hours per semester (full-time) Hours per week (full-time) Hours per semester (part-time) Hours per week (part-time) Form of assignment
Lecture 30 2 - - Exam
Laboratory 30 2 - - Credit with grade

Aim of the course

  • provide basic knowledge of algorithms properties, rules and limitations of their designing;
  • provide basic knowledge of dat structures and algorithms which operate on them, and basic algorithms which solve chosen popular algorithmic problems;
  • give basic skills of designing of algorithms for simple algorithmic problem.

Prerequisites

There are no requirements

Scope

Algorithms and their properties: concepts of the algorithmic problem and algorithm, algorithms properties, steering structures and block schemes. Programming techniques.

Data structures: concept of the data strucute, dynamical sets, linear-ordered sets, dictionaries; FIFO and LIFO structures; one and two-dimensional lists, cyclic lists, priority queues.

Dictionaries: binary seqarch trees BST and AVL, red-black trees; self-organizing structures, prefix trees, hashing, B-tree.

Sets and graphs: graph representations, breadth-first and depth-first search, graph-theory algorithms.

Selected algorithmic problems analysis: linear and binary search, k-element selection, table and file sata sorting; string search algorithms; geometric algorithms, number-theory algorithms.

Teaching methods

Lecture, computer laboratory exercises.

Learning outcomes and methods of theirs verification

Outcome description Outcome symbols Methods of verification The class form

Assignment conditions

Lecture – the passing condition is to obtain positive marks from written or oral tests conducted at least once per semester.

Laboratory  – the passing condition is to obtain positive marks from all exercises and tests conducted during the semester.


Calculation of the final grade: lecture 50% + laboratory classes 50%

Recommended reading

  1. Cormen T. H., Leiserson C. E., Rivest R. L.: Wprowadzenie do algorytmów, WNT, Warszawa, 1997
  2. Kotowski P.: Algorytmy + struktury danych = abstrakcyjne typy danych, Wyd. BTC, Warszawa, 2006
  3. Wróblewski P.: Algorytmy, struktury danych i języki programowania, Helion, Gliwice, 1997
  4. Aho A. V., Hopcroft J. E., Ullman J.D.: Algorytmy i struktury danych, Helion, Gliwice, 2003

Further reading

  1. Adamski T., Ogrodzki J.: Algorytmy komputerowe i struktury danych, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 2005
  2. Banachowski L., Diks K., Rytter W.: Algorytmy i struktury danych, WNT, Warszawa, 1996
  3. Harris S., Ross J.: Od podstaw algorytmy, Helion, Gliwice, 2006
  4. Neapolitan R., Naimipour K.: Podstawy algorytmów z przykładami w C++, Helion, Gliwice, 2004
  5. Stephens R.: Algorytmy i struktury danych stosowane w Delphi 3, 4 i 5 z przykładami w Delhi, Helion, Gliwice, 2000
  6. Wirth N.: Algorytmy + struktury danych = programy, WNT, Warszawa, 2002

Notes


Modified by prof. dr hab. inż. Andrzej Obuchowicz (last modification: 27-03-2018 18:42)