SylabUZ

Wygeneruj PDF dla tej strony

Strength of Materials - opis przedmiotu

Informacje ogólne
Nazwa przedmiotu Strength of Materials
Kod przedmiotu 06.9-WM-MaPE-P-StrMat-23
Wydział Wydział Mechaniczny
Kierunek Management and Production Engineering
Profil ogólnoakademicki
Rodzaj studiów pierwszego stopnia z tyt. inżyniera
Semestr rozpoczęcia semestr zimowy 2023/2024
Informacje o przedmiocie
Semestr 2
Liczba punktów ECTS do zdobycia 4
Typ przedmiotu obowiązkowy
Język nauczania angielski
Sylabus opracował
  • dr inż. Dariusz Michalski
Formy zajęć
Forma zajęć Liczba godzin w semestrze (stacjonarne) Liczba godzin w tygodniu (stacjonarne) Liczba godzin w semestrze (niestacjonarne) Liczba godzin w tygodniu (niestacjonarne) Forma zaliczenia
Wykład 15 1 - - Zaliczenie na ocenę
Laboratorium 15 1 - - Zaliczenie na ocenę
Projekt 15 1 - - Zaliczenie na ocenę

Cel przedmiotu

The aim of the course is to familiarize students with the methodology of solving problems and strength analyzes occurring in mechanical engineering.

Wymagania wstępne

Basic course in mathematics, basics of mechanics

Zakres tematyczny

Lecture:

W1: Basic concepts of strength of materials.

W2: Stretching and compressing materials.

W3: Stress and strain analysis.

W4: Shear.

W5: Torsion of straight bars with a circular cross-section.

W6: Moments of inertia of plane figures.

W7: Bending.

Lab:

Laboratory exercises on the strength of materials are a supplement and practical illustration of lectures and calculation exercises. They are a form of acquainting students with the methods of measuring physical quantities, the methods of elaborating the data obtained in the experiment and the methodology of preparing technical documentation of research. In addition, the results obtained during the exercises allow you to check the validity of the laws and theoretical assumptions.

 

Planned exercises:

L1: Metal hardness measurement with the Brinell method,

L2: Measurement of the hardness of metals using the Vickers method

L:3 Measurement of the hardness of metals using the Rockwell method

L:4 Static tensile test of metals,

L5: Static compression test of metals,

L6: Bending impact test,

L7: Young's modulus measurement,

L8: Diagonal bending

 

Design:

Design exercises are carried out in teams of 2-4 people, on the basis of a lecture and source materials: catalogues, standards, sources of steel producers, parts and components - WWW.

 

P1: Design tasks taking into account the stretching of materials.

P2: Design tasks considering the compression of materials.

P3: Design tasks taking into account stress and strain analysis.

P4: Shear design tasks.

P5: Design tasks taking into account the torsion of straight bars with a circular cross-section.

P6: Design tasks taking into account the moments of inertia of plane figures.

P7: Design tasks involving bending.

Metody kształcenia

Lectures with the use of audiovisual means. Presentations prepared by teams. Working with a book.
Team work during laboratory exercises.
Design exercises are performed in teams. Working with books, standards, catalogs and databases. Individual student-leader discussion on ongoing projects. End of the semester: project defense.

Efekty uczenia się i metody weryfikacji osiągania efektów uczenia się

Opis efektu Symbole efektów Metody weryfikacji Forma zajęć

Warunki zaliczenia

Lecture: obtaining a positive grade from the control work.

Laboratory: receiving positive grades from the reports on the conducted laboratory exercises.

Project: pass with a grade, the average of partial grades is calculated: for completed projects in teams - documentation and calculations, project defense, implementation of projects in a semester.

The condition for passing the course is to pass all its forms.

The final grade for completing the course is the arithmetic average of the grades for individual forms of classes.

Literatura podstawowa

1. Bhavikatti S. S.: Strength of Materials, Vikas Publishing, 2001

2. Case J.,  Chilver A.Ch., Ross C.T.F., Strength of Materials and Structures, Arnold, the Hodder Headline Group, 1999.

3. da Silva V.D.: Mechanics and Strength of Materials, Springer-Verlag, Berlin, Heidelberg, 2006.

4. Debasish Roy Choudhury & Sumon Roy: Strength of Materials: (for Polytechnic Studennts):, Vikas Publishing, 2016

5. Er. R K Rajput: A Textbook of Strength of Materials (Mechanics of Solids) SI Units, S. Chand Publishing, 2018

6. George Limbrunner G., D'Allaird C. and Spiegel L., Applied Statics and Strength of Materials.  Pearson, 2015.

7. Kobayashi T., Strength and Toughness of Materials, Springer-Verlag Tokyo, 2004

8. Mott R.L. and Untener J.A., Applied Strength of Materials, CRC Press, 2021.

 

Literatura uzupełniająca

1. Walicka A, Walicki E, Michalski D, Jurczak P, Falicki J., Strength of materials / T. 1: Academic textbook. Theory, formulas and tables for laboratory exercises. -
Zielona Góra: Publishing House of the University of Zielona Góra, 2008
2. Walicka A, Walicki E, Michalski D, Jurczak P, Falicki J., Strength of materials T. 2: Laboratory exercises - Auxiliary materials.. - Zielona Góra : Oficyna
Publishing House of the University of Zielona Góra, 2008.
3. Lewiński J, Wilczyński A.P., Witemberg-Perzyk D., Fundamentals of material strength / . - ed. 3. - Warsaw 2010
4. Dyląg Z., Jakubowicz A., Orłoś Z. Strength of materials. Volume I. WNT, Warsaw, 2007
5. Bąk R., Burczyński T.: Strength of materials with elements of a computer view. WNT, Warsaw, 2001.
6. Brzoska Z., Strength of materials, PWN, Warsaw, 1983
7. A.Jakubowicz A., Orłoś Z., Strength of materials, WNT, Warsaw, 1984
8. Lipka J., Strength of materials, WPW, Warsaw, 1990
9. Lewiński J., Fundamentals of material strength, PWP, Warsaw, 1994
10. Misiak J., Technical mechanics. Statics and strength of materials, WNT, Warsaw, 2003.

Uwagi


Zmodyfikowane przez dr inż. Dariusz Michalski (ostatnia modyfikacja: 20-04-2023 10:36)