SylabUZ
Nazwa przedmiotu | Digital signal processing |
Kod przedmiotu | 06.0-WE-ELEKTD-DigSigProc-Er |
Wydział | Wydział Nauk Inżynieryjno-Technicznych |
Kierunek | Elektrotechnika |
Profil | ogólnoakademicki |
Rodzaj studiów | Program Erasmus drugiego stopnia |
Semestr rozpoczęcia | semestr letni 2024/2025 |
Semestr | 2 |
Liczba punktów ECTS do zdobycia | 6 |
Typ przedmiotu | obowiązkowy |
Język nauczania | angielski |
Sylabus opracował |
|
Forma zajęć | Liczba godzin w semestrze (stacjonarne) | Liczba godzin w tygodniu (stacjonarne) | Liczba godzin w semestrze (niestacjonarne) | Liczba godzin w tygodniu (niestacjonarne) | Forma zaliczenia |
Wykład | 30 | 2 | - | - | Egzamin |
Laboratorium | 30 | 2 | - | - | Zaliczenie na ocenę |
By entering this course, student should know the following isssues:
The student should be able to create simple documentation regarding the completed tasks and prepare a text containing an overview of this implementation.
Fundamentals of signal theory. Notion of signal. Classifications of signals. Mathematical models of selected signals. Fourier series and Fourier transform for continuous-time signals. Fourier series and Fourier transform properties. An influence of a signal observation in finite time interval on its spectrum.
Analog-to-digital and digital-to-analog conversion. Chain of signal processing during analog-to-digital and digital-to-analog conversion. Sampling, quantization and coding. Quantization error. Spectrum of a sampled signal. Aliasing. Sampling theorem. Anti-aliasing filter. Recovery of an analog signal from samples.
Discrete Fourier transform (DFT). Derivation of amplitude and phase spectrum. Spectral leakage. Windowing. Zero padding. Examples of spectral analysis of discrete-time signals and their interpretation.
Fast Fourier transform (FFT). Butterfly computation schema in radix-2 FFT algorithm. Computational profit.
Linear and causal time-invariant (LTI) systems. Definitions of a discrete, linear and time-invariant system. Definition of causal system. Convolution. Stability of LTI systems in BIBO sense. Difference equation.
Z-transform. The Z-transform definition. Z-transform properties. The transfer function. Poles and zeros of the transfer function. Pole locus and stability of system.
Digital filters. Finite and infinite impulse response filters. Processing discrete-time signals by digital filters. Basic structures of digital filters. Determination and interpretation of the frequency response of digital filters. Importance of linear phase response in the processing of signal. Group delay.
Digital filters design. IIR filter design via bilinear transform. Window-based FIR filter design.
Opis efektu | Symbole efektów | Metody weryfikacji | Forma zajęć |
Calculation of the final grade = lecture 55% + laboratory 45%
Zmodyfikowane przez dr inż. Mirosław Kozioł (ostatnia modyfikacja: 15-04-2024 09:05)