SylabUZ

Generate PDF for this page

Dynamics of Human Musculoskeletal System - course description

General information
Course name Dynamics of Human Musculoskeletal System
Course ID 06.9-WM-IB-P-63_19
Faculty Faculty of Mechanical Engineering
Field of study Biomedical Engineering
Education profile academic
Level of studies First-cycle studies leading to Engineer's degree
Beginning semester winter term 2023/2024
Course information
Semester 6
ECTS credits to win 5
Course type optional
Teaching language polish
Author of syllabus
Classes forms
The class form Hours per semester (full-time) Hours per week (full-time) Hours per semester (part-time) Hours per week (part-time) Form of assignment
Lecture 30 2 - - Exam
Project 30 2 - - Credit with grade

Aim of the course

Celem przedmiotu jest doskonalenie wiedzy i umiejętności w zakresie projektowania z uwzględnieniem konstrukcji układów obciążanych znacznymi siłami dynamicznymi oraz poszerzenie wiedzy w zakresie kinematyki i dynamiki układu ruchu człowieka. Jednocześnie celem przedmiotu jest umiejętność analizy ruchu ciała człowieka w celu określenia występujących obciążeń oraz umiejętności oceny wpływu tych obciążeń na organy wewnętrzne zwłaszcza na układ kostno- mięśniowo-więzadłowy.

Prerequisites

Propedeutyka nauk medycznych, zarys fizjologii i anatomii, fizyka, mechanika i wytrzymałość, podstawy elektroniki i elektrotechniki, wspomagane komputerowo projektowanie inżynierskie, biomechanika inżynierska, sensory i pomiary wielkości nieelektrycznych, elektroniczna aparatura medyczna.

Scope

Wykład: Część I Wprowadzenie do kinematyki i dynamiki Wektorowy i analityczny opis ruchu punktu. Kinematyczne równania ruchu. Tor punktu. Opis ruchu punktu po torze. Naturalne kierunki odniesienia, trójścian Freneta. Ruch prostoliniowy punktu. Prędkość i przyspieszenie w ruchu prostoliniowym. Szczególne przypadki ruchu; ruch prostoliniowy jednostajny i jednostajnie zmienny. Ruch prostoliniowy nieswobodnego punktu materialnego. Metoda wyznaczania środka ciężkości dla ciała człowieka. Pojęcie siły bezwładności, równowaga układu dynamicznego; zasada d’Alemberta. Ruch krzywoliniowy. Prędkości i przyspieszenia w ruchu krzywoliniowym Przyspieszenie styczne i normalne do toru, promień krzywizny toru. Różniczkowanie wektora w układzie ruchomym. Ruch względny punktu, przyspieszenie Coriolisa. Kinematyka ciała sztywnego. Ruch obrotowy wokół stałej osi, wyznaczanie prędkości i przyspieszenia wybranego punktu. Ruch płaski ciała sztywnego, prędkości i przyspieszenia w ruchu płaskim. Metoda bieguna i chwilowego środka obrotu. Chwilowy środek przyspieszeń. Ruch złożony, wyznaczanie prędkości i przyspieszenia wybranego punktu ciała sztywnego. Dynamika układu punktów materialnych. Pęd punktu i układu punktów materialnych i prawo jego zmienności. Ruch środka masy. Kręt punktu i układu punktów materialnych i prawo jego zmienności. Praca w ruchu prosto i krzywoliniowym. Moc średnia i moc chwilowa. Praca w potencjalnym polu sił pole sił ciężkości i sprężystości. Energia kinetyczna układu punktów materialnych. Twierdzenie Koeniga. Zasada zachowania energii mechanicznej. Twierdzenie o przyroście energii kinetycznej punktu. Dynamika ciała sztywnego. Ruch postępowy i obrotowy ciała. Równanie ruchu wahadła fizycznego. Dynamika ruchu płaskiego. Założenia liniowej teorii drgań. Modelowanie układów mechanicznych, metoda superpozycji, drgania własne. Drgania swobodne tłumione oporem wiskotycznym. Drgania wymuszone nietłumione. Rezonans mechaniczny. Drgania wymuszone tłumione. Zasady wibroizolacji w układach biomechanicznych.

Część II

Wzorce ruchowe - istota z biomechaniki sportu. Definiowanie ludzkich ruchów. Podstawowe ruchy. Wzorce ruchu. Porównanie analizy ruchu jakościowego i ilościowego. Jakościowa analiza ruchów sportowych. Systemy analizy pracy sportowców. Etap przygotowania,obserwacji, oceny i diagnozy oraz analizy i interwencji w ocenie sportowców. Identyfikacja kluczowych cech ruchu. Wzorce ruchowe - geometria ruchu. Podstawy ruchu. Koordynacja ruchów w stawach. Ilościowa analiza ruchu. Metody analizy ruchu. Zastosowanie wideografii w analize ruchów sportowców. Przyczyny ruchu - siły i momenty. Metody analizy sił podczas ruchu. Zasada zachowania pędu i momentu pędu dla złożonych struktur układu ruchu. Określenie środka masy ciała człowieka. Wytwarzanie i kontrola momentu pędu. Pomiar siły. Pomiary ciśnienia. Anatomia ruchu ludzkiego ciała. Ruchomość ciała. Szkielet i jego kości. Znaczenie stawów w powstawaniu ruchów. Mięśnie jako motor napędowy ruchu. Procedury doświadczalne oceny funkcjonowania mięśni. Dynamometria izokinetyczna.

Projekt

Wprowadzenie do problematyki urządzeń wspomagających ćwiczenia sportowe, analiza metod i technik ćwiczeń dla wybranych dla wybranych dyscyplin sportowych, zasady planowania ćwiczeń, projekt koncepcyjny urządzenia mechatronicznego wspomagającego proces rehabilitacji wybranego schorzenia, ocena rozwiązania pod kątem skuteczności procesu przygotowania sportowego, możliwości techniczne wykonania urządzenia, warunki i przepisy dotyczące wytwarzania sprzętu, projekt układu sterowania urządzenia, wybór elementów wykonawczych i czujników, przygotowanie dokumentacji technicznej, rysunek złożeniowy urządzenia, rysunki wykonawcze, algorytmy sterowania, ocena projektów.

Teaching methods

Wykład konwencjonalny, metoda projektu, dyskusja, praca z dokumentem źródłowym, praca w grupach

Learning outcomes and methods of theirs verification

Outcome description Outcome symbols Methods of verification The class form

Assignment conditions

Wykład: warunkiem zaliczenia jest uzyskanie pozytywnej oceny z egzaminu przeprowadzonego w formie pisemnej.

Projekt: zaliczenie na ocenę (zaliczenie podstawie ocen otrzymanych podczas realizacji projektu za przygotowanie do zajęć oraz oceny końcowej za projekt)

Ocena końcowa na podstawie średniej arytmetycznej ocen z wykładu i projektu

Recommended reading

1. R. Bartlet, Introduction to Sports Biomechanics - Analysing Human Movement Patterns, Routledge, 2007

2. P. Grimshaw i in., Biomechanika sportu. Krótkie wykłady, PWN, 2010

3. T. Bober, J. Zawadzki, Biomechanika układu ruchu człowieka.

4. Romuald Będziński, Biomechanika, Oficyna Wyd. Politechniki Wrocławskiej, Wrocław 1997

5. Romuald Będziński red., Biomechanika, IPPT PAN, Mechanika Techniczna Tom XII, 2011

Further reading

1. Biomechanika i Inżynieria Rehabilitacji, Tom 5.
2. C. Ross Ethier, Craig A. Simmons, Introductory Biomechanics.
3. Poradnik rehabilitanta.
4. B. Kolster, G. Ebelt-Paprotny Poradnik fizjoterapeuty, Osolineum, 1996
5. Borkowska M. (red): ABC rehabilitacji dzieci. Najczęstsze schorzenia narządu ruchu. Wyd. Pelikan, Warszawa 1989.
6. Bruhl W. : Zarys reumatologii. PZWL, Warszawa 1987.
7. Dega., Senger A.: Ortopedia i rehabilitacja. PZWL, Warszawa 1996

Notes


Modified by dr hab. inż. Tomasz Klekiel, prof. UZ (last modification: 23-03-2023 09:06)